УДК: 333.1; 519.86

JEL R13; C71

В.А. Васильев

Институт математики им. С.Л. Соболева СО РАН, Новосибирск

Об эквивалентности ядер и равновесий в многорегиональной экономической системе

Аннотация

В докладе анализируются условия эквивалентности ядер и вальрасовских равновесий в пространственных моделях регионального взаимодействия, предложенных акад. А.Г.Гранбергом и его учениками [4]. Исследуются два варианта: 1) асимптотическая эквивалентность (в терминах стягиваемости ядер реплик) и 2) совпадение нечетких ядер с множеством вальрасовских равновесных распределений. Помимо самостоятельной ценности, оба варианта представляют значительный интерес для изучения вопросов существования вальрасовских равновесий в указанных пространственных моделях.

Ключевые слова: многорегиональная экономическая система, асимптотическая эквивалентность ядер и равновесий, равновесие Вальраса, нечеткое ядро

V.A.Vasil'ev

Sobolev Institute of Mathematics SB RAS (Novosibirsk, Russia)

On the core equivalence in a multiregional economic system

Abstract

The paper deals with the core equivalence in multiregional economic systems. Two cases are considered: asymptotical equivalence and the fuzzy-core equivalence. The results obtained seem to be rather useful in equilibrium-existence investigations relating to the multiregional economic systems under consideration.

Keywords: multiregional model, core equivalence, Walrasian equilibrium, fuzzy core.

Модель *М*

Как и в [2], в докладе рассматривается модель экономического взаимодействия регионов из [4,5], определяемая следующими параметрами:

$$\mathcal{M} = \langle R, \{A^s, G^s, H^s, b^s, d^s\}_{s \in \mathbb{R}} \rangle,$$

где $R = \{1, ..., r\}$ - множество регионов; A^s - прямоугольная матрица размера $n_s \times l_s$, характеризующая производственный сектор региона $s \in R$; G^s и H^s -прямоугольные матрицы размера $n_s \times n$, описывающие способы вывоза и ввоза в регионе $s \in R$; b^s - векторстолбец размерности n_s , характеризующий имеющийся ресурсно-технологический потенциал региона $s \in R$; d^s - вектор-столбец размерности n_s , описывающий затраты ресурсов и продукции, связанные с достижением целей развития региона $s \in R$.

Напомним [4,5], что ресурсно-технологические возможности Z_s региона $s \in R$ определяются формулой

$$Z_{s} := \{ z^{s} = (x^{s}, u^{s}, v^{s}, \lambda_{s}) \in \mathbb{R}_{+}^{l_{s}} \times \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n} \times \mathbb{R}_{+} \mid A^{s} x^{s} + G^{s} u^{s} + H^{s} v^{s} \ge b^{s} + \lambda_{s} d^{s} \},$$

где неотрицательные вектор-стобцы $x^s = (x_i^s)_{i=1}^{l_s}$, $u^s = (u_j^s)_{j=1}^n$, $v^s = (v_j^s)_{j=1}^n$ указывают объёмы производства, вывоза и ввоза, соответственно, а число $\lambda_s \in \mathbb{R}_+$ - степень достижения целей регионального развития для $s \in R$ (как обычно, символом R обозначается множество вещественных чисел, а неравенство для векторов понимается в обычном покомпонентном смысле: $x \ge y \Leftrightarrow x_i \ge y_i, i = 1,...,m$ для любых векторов $x = (x_1,...,x_m)$ и $y = (y_1,...,y_m)$ из R^m). Элементы множества Z_s называются *планами* региона s.

Цели регионов задаются функциями t_s , сопоставляющими вектору $z^s = (x^s, u^s, v^s, \lambda_s)$ его последнюю компоненту λ_s : $t_s(z^s) = t_s(x^s, u^s, v^s, \lambda_s) := \lambda_s$, $(x^s, u^s, v^s, \lambda_s) \in Z_s$, $s \in R$. Положим $Z_{\mathcal{M}} := \prod_{s \in R} Z_s$ и через $Z_{\mathcal{M}}(R)$ обозначим совокупность сбалансированных планов модели \mathcal{M} : $Z_{\mathcal{M}}(R) = \{(x^s, u^s, v^s, \lambda_s)_{s \in R} \in Z_{\mathcal{M}} \mid \sum_{s \in R} u^s \geq \sum_{s \in R} v^s \}$. В дальнейшем часто используются так называемые строго автаркические планы, под которыми понимаются элементы множеств

$$\hat{Z}(s) = \hat{Z}_{\mathcal{M}}(s) := \{(x^s, u^s, v^s, \lambda_s) \in Z_s \mid u^s \gg v^s \}, \quad s \in R$$
 (как обычно, сокращение $x \gg y$ для векторов $x, y \in \mathbb{R}^m$ означает выполнение строгих неравенств $x_i > y_i$, $i = 1, ..., m$). Напомним также [2], что при анализе условий ограниченности множества $Z_{\mathcal{M}}(R)$ рассматриваются сбалансированные планы *однородной составляющей модели* \mathcal{M} , определяемой формулой: $\mathcal{M}_0 = \langle R, \{A^s, G^s, H^s, 0, d^s\}_{s \in R} \rangle$.

2 Вальрасовское равновесие и нечеткое ядро

Следуя [5], напомним одно из основных понятий работы — определение вальрасовского равновесия в модели межрегионального взаимодействия \mathcal{M} .

Определение 1. Будем говорить, что план $\bar{z} = (\bar{x}^s, \bar{u}^s, \bar{v}^s, \bar{\lambda}_s)_{s \in R} \in Z_{\mathcal{M}}(R)$ является вальрасовским равновесием модели \mathcal{M} , если существует ненулевой вектор цен $\bar{p} \in \mathbb{R}^n_+$ такой, что $\bar{p} \cdot \bar{u}^s \geq \bar{p} \cdot \bar{v}^s$ для всех $s \in R$, и при этом для любых $s \in R$ и $z^s = (x^s, u^s, v^s, \lambda_s)$ из Z_s справедлива импликация: $\lambda_s > \bar{\lambda}_s \Rightarrow \bar{p} \cdot u^s < \bar{p} \cdot v^s$ (как обычно, $x \cdot y$ - скалярное произведение векторов x и y).

Совокупность вальрасовских равновесий модели M будем обозначать через W(M).

Как уже отмечалось в [2], одна из основных задач, решаемых с применением различных обобщений известной теоремы Скарфа о непустоте ядра заключается в получении условий существования вальрасовского равновесия, не требующих ограниченности множеств Z_s . Поиск таких условий предлагается осуществлять путем решения двух теоретико-игровых задач: одна из них заключается в определении требований, гарантирующих совпадение множества $W(\mathcal{M})$ и нечеткого ядра модели \mathcal{M} , другая - в нахождении условий непустоты указанного нечеткого ядра (отметим, что достаточно общие условия такого рода установлены в [1]). Настоящий доклад посвящен исследованию первой из указанных задач.

Для полноты изложения напомним определение нечеткого ядра модели \mathcal{M} , опирающееся на понятие блокирования с помощью нечеткой коалиции. Как обычно, нечеткими коалициями будем называть элементы множества σ_F , определяемого формулой $\sigma_F := \{ f = (f_1, ..., f_r) \mid f \neq 0, f_s \in [0,1], s \in R \}$. Величина компоненты f_s нечеткой коалиции f указывает степень участия региона $s \in R$ в координации усилий "большой коалиции" R. Через R(f) будем обозначать носитель нечёткой коалиции $f = (f_1, ..., f_r)$, определяемый равенством $R(f) := \{ s \in R \mid f_s > 0 \}$. Следуя [5], введем определение нечеткого блокирования во множестве $Z_{\mathcal{M}}(R)$.

Определение 2. Будем говорить, что план $\bar{z} = (\bar{z}^s)_{s \in R} \in Z_{\mathcal{M}}(R)$ блокируется нечёткой коалицией $f = (f_1, ..., f_r)$, если существуют региональные планы $z^s = (x^s, u^s, v^s, \lambda_s) \in Z_s$, $s \in R(f)$, такие, что $t_s(z^s) > t_s(\bar{z}^s)$ для каждого $s \in R(f)$, и при этом выполняется балансовое неравенство $\sum_{s \in R(f)} f_s u^s \ge \sum_{s \in R(f)} f_s v^s$.

Совокупность сбалансированных планов модели M, не блокируемых никакой нечёткой коалицией, будем обозначать через $C_F(M)$ и называть нечётким ядром модели M.

Введем понятия строгой автаркичности и ненасыщенности регионов, использовавшиеся в [2] при обсуждении условий существования вальрасовских распределений модели \mathcal{M} .

Определение 3. Регион $s \in R$ называется строго автаркическим, если выполняется условие: $\hat{Z}_{M}(s) \neq \emptyset$ (то есть, если существует план $z_{0}^{s} = (x_{0}^{s}, u_{0}^{s}, v_{0}^{s}, \lambda_{s}^{0}) \in Z_{s}$ такой, что $u_{0}^{s} \gg v_{0}^{s}$).

Определение 4. Регион $s \in R$ называется ненасыщенным, если справедливо неравенство: $\sup_{z^s \in Z_s} t_s(z^s) > \sup_{\tilde{z}^s \in \tilde{Z}_s} t_s(\tilde{z}^s)$, где $\tilde{Z}_s := \Pr_{Z_s} Z_{\mathcal{M}}(R)$.

В работе [2] была анонсирована следующая теорема эквивалентности.

Теорема 1. Если регионы модели \mathcal{M} строго автаркические и ненасыщенные, то ее нечеткое ядро $C_F(\mathcal{M})$ совпадает с множеством вальрасовских планов $W(\mathcal{M})$.

Основные результаты предлагаемого доклада заключаются в конкретизации условий автаркичности и ненасыщенности регионов модели \mathcal{M} . Переходя к одной из детализаций **Теоремы 1**, укажем важное свойство регионов рассматриваемой модели, наличие которого гарантирует их ненасыщенность.

Определение 6. Регион $s \in R$ называется неограниченным по функционалу, если его целевая функция t_s не ограничена на Z_s .

В заключение сформулируем одну из конкретизаций Теоремы 1.

Теорема 2. Если регионы модели \mathcal{M} строго автаркические и неограниченные по функционалу, то ее нечеткое ядро $C_F(\mathcal{M})$ совпадает с множеством вальрасовских планов $W(\mathcal{M})$.

Работа выполнена в рамках государственного задания ИМ СО РАН им. С.Л.Соболева (проект № 0314-2019-0018) и поддержана РФФИ (грант № 19-010-00910).

ЛИТЕРАТУРА

- [1]. Васильев В.А. Об одном обобщении теоремы Скарфа о непустоте ядра // Препринт № 283, ИМ СО РАН. -2012. Новосибирск. 41С.
- [2]. Васильев В.А. О равновесии в многорегиональных экономических системах с неограниченными технологическими множествами // Труды Гранберговской конференции, Сборник докладов Международной конференции, посвященной 80-летию со дня рождения акад. А.Г.Гранберга, Новосибирск: ИЭОПП СО РАН. -2017. -С. 324-331.
- [3]. Васильев В.А., Суслов В.И. О неблокируемых состояниях многорегиональных экономических систем // Сибирский журнал индустриальной математики. -2009. Том XII, $N \ge 4(40)$. -C. 23-34.
- [4]. Гранберг А.Г., Суслов В.И., Суспицын С.А. Многорегиональные системы: экономико-математическое исследование. -2007. Новосибирск: Наука. Сиб. Науч. Изд-во.
- [5]. Рубинштейн А.Г. Моделирование экономических взаимодействий в территориальных системах. -1983. Новосибирск: Наука. Сиб. отд-ние.